On Lattices Generated by Finite Abelian Groups
نویسندگان
چکیده
This paper is devoted to the study of lattices generated by finite Abelian groups. Special species of such lattices arise in the exploration of elliptic curves over finite fields. In the case where the generating group is cyclic, they are also known as the Barnes lattices. It is shown that for every finite Abelian group with the exception of the cyclic group of order four these lattices have a basis of minimal vectors. Another result provides an improvement of a recent upper bound by M. Sha for the covering radius in the case of the Barnes lattices. Also discussed are properties of the automorphism groups of these lattices.
منابع مشابه
A SHORT NOTE ON ATOMS AND COATOMS IN SUBGROUP LATTICES OF GROUPS
In this paper we give an elementary argument about the atoms and coatoms of the latticeof all subgroups of a group. It is proved that an abelian group of finite exponent is strongly coatomic.
متن کاملNon-Abelian Sequenceable Groups Involving ?-Covers
A non-abelian finite group is called sequenceable if for some positive integer , is -generated ( ) and there exist integers such that every element of is a term of the -step generalized Fibonacci sequence , , , . A remarkable application of this definition may be find on the study of random covers in the cryptography. The 2-step generalized sequences for the dihedral groups studi...
متن کاملSpherical 2-Designs and Lattices from Abelian Groups
We consider lattices generated by finite Abelian groups. The main result says that such a lattice is strongly eutactic, which means the normalized minimal vectors of the lattice form a spherical 2-design, if and only if the group is of odd order or if it is a power of the group of order 2. This result also yields a criterion for the appropriately normalized minimal vectors to constitute a unifo...
متن کاملGabor Analysis over Finite Abelian Groups
Gabor frames for signals over finite Abelian groups, generated by an arbitrary lattice within the finite time-frequency plane, are the central topic of this paper. Our generic approach covers both multi-dimensional signals as well as non-separable lattices, and in fact the multi-window case as well. Our generic approach includes most of the fundamental facts about Gabor expansions of finite sig...
متن کاملLattices from Hermitian function fields
We consider the well-known Rosenbloom-Tsfasman function field lattices in the special case of Hermitian function fields. We show that in this case the resulting lattices are generated by their minimal vectors, provide an estimate on the total number of minimal vectors, and derive properties of the automorphism groups of these lattices. Our study continues previous investigations of lattices com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Discrete Math.
دوره 29 شماره
صفحات -
تاریخ انتشار 2015